<u>FINAL</u> ANNUAL MONITORING REPORT YEAR 1 (2012) HAUSER CREEK STREAM RESTORATION SITE DAVIE COUNTY, NORTH CAROLINA (EEP Project No. 92471, Contract No. 004804) Construction Completed August 2011

Submitted to: North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program Raleigh, North Carolina

February 2013

<u>FINAL</u> ANNUAL MONITORING REPORT YEAR 1 (2012) HAUSER CREEK STREAM RESTORATION SITE DAVIE COUNTY, NORTH CAROLINA (EEP Project No. 92471, Contract No. 004804) Construction Completed August 2011

Submitted to: North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program Raleigh, North Carolina

> Prepared by: Axiom Environmental, Inc. 218 Snow Avenue Raleigh, North Carolina 27603

February 2013

Table of Contents

1.0 EXECUTIVE SUMMARY	1
2.0 METHODOLOGY	2
2.1 Vegetation Assessment	2
2.2 Stream Assessment	2
3.0 REFERENCES	3

Appendices

APPENDIX A. PROJECT SITE LOCATION MAP AND BACKGROUND TABLES
Figure 1. Site Location Map
Table 1. Project Components and Mitigation Credits
Table 2. Project Activity and Reporting History
Table 3. Project Contacts Table
Table 4. Project Baseline Information and Attributes
APPENDIX B. VISUAL ASSESSMENT DATA
Figures 2 and 2A-2B. Current Conditions Plan View
Table 5. Visual Stream Morphology Stability Assessment
Table 6. Vegetation Condition Assessment
Stream Fixed-Station Photographs
Vegetation Monitoring Photographs
APPENDIX C. VEGETATION PLOT DATA
Table 7. Vegetation Plot Criteria Attainment
Table 8. CVS Vegetation Plot Metadata
Table 9. Total and Planted Stems by Plot and Species
APPENDIX D. STREAM SURVEY DATA
Cross-section Plots
Longitudinal Profile Plots
Substrate Plots
Table 10. Baseline Stream Data Summary
Table 11a - b. Monitoring Data
APPENDIX E. HYDROLOGY DATA
Table 12. Verification of Bankfull Events

1.0 EXECUTIVE SUMMARY

The North Carolina Ecosystem Enhancement Program (NCEEP) has completed approximately 2525 linear feet of stream restoration and 93 linear feet of enhancement (level II), located on the property of Alethea Segal in Davie County, North Carolina at the Hauser Creek Stream Restoration Site (hereafter referred to as the "Site") to assist in fulfilling stream mitigation goals in the area. The Site is located in United States Geological Survey (USGS) Hydrologic Unit 03040101160010 (North Carolina Division of Water Quality [NCDWQ] Subbasin 03-07-02) of the Yadkin Pee-Dee River Basin. The Site is not located in a Targeted Local Watershed. The Site drainage area is an approximately 2.64-square mile rural watershed at the Site outfall consisting primarily of forest and pasture land with low density residential property. This report (compiled based on NCEEP's *Procedural Guidance and Content Requirements for EEP Monitoring Reports* Version 1.4 dated 11/7/11) summarizes data for year 1 (2012) monitoring.

Restoration goals outlined in the approved Hauser Creek Restoration Plan [NCEEP 2008] are:

- Improve water quality with the construction of stable stream banks, removal of cattle access, and the establishment of a protective buffer.
- Control transport of sediment recruited by stream flows from cleared adjacent floodplains with the establishment of a forested buffer.
- Improve the stream function and habitat with the connection of the channelized and incised stream back to its floodplain.
- Restore long-term stability with the restoration of channel pattern, profile, and dimension.
- Improve in-stream habitat with the installation of root wads, constructed riffles, cross vanes, and single wing vanes to enhance pool depths.
- Improve buffer habitat by creating ephemeral pools within the old channel fill areas.

Project objectives outlined in the approved Hauser Creek Restoration Plan [NCEEP 2008] are:

- The restoration of 2525 linear feet of stream with Priority I Restoration in order to raise the stream elevation, reconnect the floodplain, restore pattern, and reestablish channel dimension.
- The enhancement of 93 linear feet of stream with Enhancement Level II activities which involve buffer restoration and bank stabilization.
- The preservation of 108 linear feet of stream by placing a conservation easement along the downstream reach of channel.
- Establish a riparian buffer with an average distance of 50 feet beyond each stream bank. Buffer restoration on 5.9 acres along the stream length will be established with the planting of riparian vegetation.

Prior to construction, the Site contained a degraded stream channel located within maintained pasture and floodplain fields with wooded uplands. Site streams were characterized by a narrow buffer, increased widths ranging from 20-35 feet, steep to moderate bank slopes, incision, and elevated bank-height ratios. Project construction was completed in August 2011. The Site will be protected by a permanent conservation easement held by the State of North Carolina.

Seven vegetation monitoring plots were monitored on October 24, 2012 for Year 1 (2012) monitoring. Vegetation success criteria dictate that an average density of 320 stems-per-acre must be surviving in the first three monitoring years. Subsequently, 288 stems-per-acre must be surviving in year 4 and 260 stems-per-acre in year 5. Stem counts will be based on an average of the evaluated vegetation plots. Based on the number of stems counted, average densities were measured at 422 stems-per-acre surviving in Year 1 (2012). The dominant species identified at the Site were planted stems of sycamore (*Platanus occidentalis*), green ash (*Fraxinus pennsylvanica*), and silky dogwood (*Cornus amomum*). Five of the seven individual plots met success criteria based on planted stems alone. Plots 2 and 6 were each one

stem shy of success criteria based on planted stems alone; however, when including naturally recruited stems of box elder (*Acer negundo*) and sweetgum (*Liquidambar styraciflua*) Plots 2 and 6 were above 320 stems per acre.

No vegetation problem areas were observed within the Site.

Success criteria for stream restoration will be assessed using measurements of stream dimension, pattern, and profile; Site photographs; visual assessments; and vegetation sampling. Success is based on the stability of the stream.

Overall, the stream is functioning properly and as designed. Three areas of minor bank erosion were noted in Figures 2A-2B in Appendix B, but these areas are not causing additional issues up or downstream and vegetation is establishing.

Map Label*	Station	Notes
PA-1	22+50	Minor erosion on both banks; vegetation is establishing
PA-2	18+75	Minor erosion and undercut bank on outer/left bank; vegetation is establishing
PA-3	12+00	Minor undercutting on outer/right bank; vegetation is establishing

*Map labels on Figures 2A-2B, Appendix B

Success criteria for stream restoration will include documentation of two bankfull channel events during the monitoring period. In the event that less than two bankfull events occur during the first five years, monitoring will continue until the second event is documented. In addition, bankfull events must occur during separate monitoring years. A crest gauge is located within the Site to assist with documentation of bankfull events (Figures 2 and 2A-2B, Appendix B). No bankfull event was documented during the Year 1 (2012) monitoring season.

Summary information/data related to the occurrence of items such as beaver or encroachment and statistics related to performance of various project and monitoring elements can be found in tables and figures within this report's appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly the Restoration Plan) documents available on NCEEPs website. All raw data supporting the tables and figures in the appendices is available from NCEEP upon request.

2.0 METHODOLOGY

2.1 Vegetation Assessment

Seven vegetation plots were established and marked after construction with metal t-posts demarking the four corners of the plot. The plots are 10 meters square and are located randomly within the Site. These plots were surveyed on July 17, 2012 for the Year 1 (2012) monitoring season using the *CVS-EEP Protocol for Recording Vegetation, Version 4.2* (Lee et al. 2008) (<u>http://cvs.bio.unc.edu/methods.htm</u>); results are included in Appendix C. The taxonomic standard for vegetation used for this document was *Flora of the Southern and Mid-Atlantic States* (Weakley 2012).

2.2 Stream Assessment

Annual stream monitoring was conducted in October of 2012. Measurements were taken using a Topcon GTS 303 total station and Recon data collector. The raw total station file was processed using Carlson Survey Software into a Computer Aided Design (CAD) file. Coordinates were exported as a text/ASCII file to Microsoft Excel for processing and presentation of data. Pebble counts were completed using the

modified Wolman method (Rosgen 1993). A crest gauge has been installed in the channel to assist with documentation of overbank events.

Annual stream monitoring was conducted the week of October 25, 2012. Seven permanent crosssections, five riffle and two pool, will be used to evaluate stream dimension; locations are depicted on Figures 2 and 2A-2B (Appendix B). Cross-sections are permanently monumented with metal t-posts at each end point. Cross-sections will be surveyed annually to provide a detailed measurement of the stream and banks including points on the adjacent floodplain, top of bank, bankfull, breaks in slope, edge of water, and thalweg. Data will be used to calculate width-depth ratios, entrenchment ratios, and bank height ratios for each cross-section. In addition, pebble counts were completed at cross-sections 3,5, and7, and photographs will be taken at each permanent cross-section annually.

One approximately 2500-linear foot monitoring reach will be used to evaluated stream pattern and longitudinal profile; locations are depicted on Figures 2 and 2A-2B (Appendix B). Measurement of channel pattern will include belt-width, and meander length. Subsequently, data will be used to calculated meander-width ratios. Longitudinal profile measurements will include average water surface slopes and facet slopes and pool-to-pool spacing. In addition, visual stream morphology stability assessments will be completed in each of the monitoring reach annually to assess the channel bed, banks, and in-stream structures.

3.0 REFERENCES

- Ecosystem Enhancement Program (EEP). Unpublished. Procedural Guidance and Content Requirements for EEP Monitoring Projects, Version 1.4, dated 11/07/11. NC Department of Environment and Natural Resources. Available online at <u>http://portal.ncdenr.org/c/document_library/get_file?p_l_id=1169848&folderId=2288101</u> <u>&name=DLFE-39268.pdf</u>.
- Lee, Michael T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation, Version 4.2. (online). Available: http://cvs.bio.unc.edu/methods.htm.
- N.C. Ecosystem Enhancement Program. 2008. Ripshin Branch Stream & Wetland Restoration Plan - Ashe County, NC.
- Weakley, Alan S. 2012. Flora of the Southern and Mid-Atlantic States. Available online at: <u>http://www.herbarium.unc.edu/WeakleysFlora.pdf</u> [September 28, 2012]. University of North Carolina Herbarium, North Carolina Botanical Garden, University of North Carolina, Chapel Hill, North Carolina.

APPENDIX A

PROJECT SITE LOCATION MAP AND BACKGROUND TABLES

Figure 1. Site Location Map

- Table 1. Project Components and Mitigation Credits
- Table 2. Project Activity and Reporting History
- Table 3. Project Contacts Table
- Table 4. Project Baseline Information and Attributes

Â	Axiom Environmental 218 Snow Avenue Raleigh, NC 27603 (919) 215-1693
Axiom Environmental, Inc.	

SITE LOCATION MAP HAUSER CREEK EEP PROJECT NUMBER 92471 Davie County, North Carolina

Dwn. by. KRJ	FIGURE
Date: October 2012	1
Project: 12-004.11	

Table 1. Project Components and Mitigation Credits

Hauser Stream Restoration Site (EEP Project Number 92741)

Mitigation Credits									
		Stream	Riparian Wetland					Duffor	
Туре	Restoratio	n Restor	ration Equival	ent Restora	tion	Restoration Eq	uivalent	Duiter	
Totals	2387		22	22					
			Projects	Components	·				
Project Component/ Reach ID	Station Range	Existing Linear Footage/ Acreage	Priority Approach	Restoration/ Restoration Equivalent	Restoration/ RestorationRestoration Linear Footage/ AcreageMitigation RatioC		comment		
Reach 1	00+72 - 16+40		P1	Restoration	1568	1:1	Priorit	y 1 Restoration	
Reach 2	16+40 - 19+90		P1	Restoration	350	2:1 Half Credit D Within a Utili		Half Credit Due to Location Within a Utilities Easement	
Reach 3	19+90 - 26+31	641	P1	Restoration	607	1:1	34 ft is Outs Pip	34 ft is Outside of Easement in a Piped Crossing	
Reach 4	26+31-27+39	108	Pres	Preservation	108	5:1	Preservation		
Reach 5		93	E11	Enhancement (Level II)	93	2.5:1	Level 11 Enhancement.		
				Component Summation					
Restoration Level		S	Stream (linear footage)		Vetland (acres)	Buffer	r (square footage)		
Restoration		2525*							
	Enhancement (Level II)		93						
Preservation			108						
	Totals			2726					
Mitigation Units			2409 SMUs						

*34 linear feet is located outside of the easement in a piped crossing and is therefore not counted for mitigation credit; in addition, 350 linear feet is located within a utilities easement and therefore only receives half credit (2:1 mitigation ratio)

Table 2. Project Activity and Reporting HistoryHauser Stream Restoration Site (EEP Project Number 92471)

Elapsed Time Since Grading Complete: 1 year 4 months Elapsed Time Since Planting Complete: 0 year 11 months Number of Reporting Years: 1

	Data Collection	Completion
Activity or Deliverable	Complete	or Delivery
ERTR		April 2008
Restoration Plan		May 2008
No-rise Flood Study Approval		December 2009
Construction Plans / Erosion Control Plan		June 2010
Land Quality Approval		May 2011
Construction and Grading Begins		April 2011
Temporary S&E Mix Applied		April-August 2011
Permanent Seed Mix Applied		April-August 2011
Construction and Grading Ends		August 2011
Containerized Planting for Entire Reach		January 2012
As-Built Construction Drawings		March 2012
SCO Final Report		March 2012
Year 1 Monitoring (2012)	October 2012	December 2012
Year 2 Monitoring (2013)		
Year 3 Monitoring (2014)		
Year 4 Monitoring (2015)		
Year 5 Monitoring (2016)		

Table 3. Project Contacts Table

Hauser Stream Restoration Site (EEP Project Number 92471)

Designer	Ward Consulting Engineers, P.C.			
	8368 Six Forks Road Suite 104			
	Raleigh, NC 27615-5083			
	Becky Ward 919-870-0526			
Construction, Planting, and Seeding	Carolina Environmental Contracting, Inc.			
Contractor	Mt. Airy, North Carolina			
	336-320-3849			
Surveyor	Turner Land Surveying PLLC			
	3201 Glenridge Drive			
	Raleigh, NC 27604			
	Elizabeth Turner 919-875-1378			
Seed Mix Source	Unknown			
Baseline Data Collection	Not Applicable			
Year 1Monitoring Performer	Axiom Environmental, Inc.			
	218 Snow Avenue			
	Raleigh, NC 27603			
	Grant Lewis 919-215-1693			

Project Information				
Project Name	Hauser Stream Restoration Site			
Project County	Davie County, North Carolina			
Project Area	9.11 acres			
Project Coordinates	836,322.303°N, 1,551,907.668°E			
Project Watershe	d Summary Information			
Physiographic Region	Piedmont			
Ecoregion	Southern Outer Piedmont			
Project River Basin	Yadkin Pee-dee			
USGS 8-digit HUC	03040101			
USGS 14-digit HUC	03040101160010			
NCDWQ Subbasin	03-07-02			
Project Drainage Area	2.64 square miles			
Project Drainage Area Impervious Surface	0.6%			
Watershed Type	Rural			
Reach Sum	mary Information			
Parameters	Hauser Creek			
Restored/Enhanced Length	2726 linear feet			
Drainage Area	2.64 square miles			
NCDWQ Index Number	12-86			
NCDWQ Classification	WS-IV			
Valley Type/Morphological Description	VIII/C4			
Dominant Soil Series	Wehadkee, Chewacla			
Drainage Class	Poorly Drained, Somewhat poorly drained			
Soil Hydric Status	Hydric, Nonhydric may contain hydric Wehadkee			
	inclusions			
Slope	0.0025			
FEMA Classification	Regulated Stream			
Native Vegetation Community	Piedmont/Low Mountain Alluvial Forest			
Percent Composition of Exotic Invasives	<5%			
Regulator	y Considerations			
Regulation	Applicable			
Waters of the U.S. –Sections 404 and 401	Yes-Received Appropriate Permits			
Endangered Species Act	Yes-No Effect			
Historic Preservation Act	No			
CZMA/CAMA	No			
FEMA Floodplain Compliance	Yes-Received a No Rise Certification			
Essential Fisheries Habitat	No			

Table 4. Project Baseline Information and AttributesHauser Stream Restoration Site (EEP Project Number 92471)

APPENDIX B

VISUAL ASSESSMENT DATA

Figures 2 and 2A-2B. Current Conditions Plan ViewTable 5. Visual Stream Morphology Stability AssessmentTable 6. Vegetation Condition AssessmentStream Fixed Station PhotographsVegetation Monitoring Photographs

Fig		Axiom Environmental, Inc. Prepared for:
		HAUSER CREEK RESTORATION SITE
		EEP Project Number 92471 Davie County, NC
Lege	end Easement Boundary Stream	Title: CURRENT CONDITIONS PLAN VIEW
In-Str	eam Structures	Drawn by:
de la	Cross Vane	CLF
	Log Structure Root Wad	Scale:
8	Single Arm Vane	Project No.:
	Stream Problem Areas	12-004.11
	Cross Sections	FIGURE
$\mathbf{\mathbf{x}}$	Photo Points	
•	Crest Gauge	2
500) 750 Feet	

Axiom Environmental 218 Snow Avenue Raleigh, NC 27603 (919) 215-1693 CURRENT CONDITIONS PLAN VIEW HAUSER CREEK EEP PROJECT NUMBER 92471 Davie County, North Carolina

Dwn. by. KRJ/CLF	FIGURE
Date: February 2013	2Δ
Project: 12-004.11	

Table 5 Reach ID Assessed Length

Visual Stream Morphology Stability Assessment

Hauser 2468

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	15	15			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	24	24			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	100	100			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	100	100			100%			
		2. Thalweg centering at downstream of meander (Glide)	100	100			100%			
		•								
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			4	60	99%			99%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			3	30	99%			99%
				Totals	7	90	98%	0	0	98%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	8	8			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	8	8			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	8	8			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	8	8			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	8	8			100%			

HAUSER

Table 6 Vegetation Condition Assessment

Planted Acreage¹

Flatileu Acreage	5.9					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	Very limited cover of planted woody and herbaceous material on stream banks	0.1 acres	N/A	0	0.00	0.0%
2. Low Stem Density Areas	Woody stem densities clearly below target levels based on visual observations and MY3 stem count criteria.	0.1 acres	N/A	0	0.00	0.0%
			Total		0.00	0.0%
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 acres	N/A	0	0.00	0.0%
		Cu	mulative Total	0	0.00	0.0%

Easement Acreage² 13.34 % of Mapping CCPV Number of Combined Easement Vegetation Category Definitions Threshold Depiction Polygons Acreage Acreage 4. Invasive Areas of Concern⁴ Microstegium, tall fescue, multiflora rose, Chinese privet, Chinese lespedeza 1000 SF N/A 0 0.00 0.0% 5. Easement Encroachment Areas³ Microstegium encroachment none N/A 0 0.00 0.0%

1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.

2 = The acreage within the easement boundaries.

3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.

4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution is suppressing the viability, density, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by EEP such as species present, their coverage, distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the potential interest given their extreme risk/threat level for mapping as points where <u>isolated</u> specimens are found, particularly early in a projects monitoring history. However, areas of discreet, dense patches will of course be mapped as polygons, particularly or situations where the conditon for an area is somewhere between isolated specimens and dense, discreet patches. In any case, the point or polygon/area feature can be symbolized to describe things like high or low concern and species can be listed as a map inset, in legend items if the number of species are limited or in the narrative section of the executive summary.

High Concern:				Low/Moderate Concern:	
Vines	Genus/Species	Shrubs/Herbs	Genus/Species	Shrubs/Herbs	Genus/Species
Kudzu	Pueraria lobata	Japanese Knotweed	Polygonum cuspidatum	Japanese Privet	Ligustrum Japonicum
Porcelain Berry	Ampelopsis brevipeduncu	Oriental Bittersweet	Celastrus orbiculatus	Glossy Privet	Ligustrum lucidum
Japanese Honeysuckle	Lonicera japonica	Multiflora Rose	Rosa multiflora	Fescue	Festuca spp.
Japanese Hops	Humulus japonicus	Russian olive	Elaeagnus angustifolia	English Ivy	Hedera helix
Wisterias	Wisteria spp.	Chinese Privet	Ligustrum sinense	Microstegium	Microstegium vimineum
Winter Creeper	Euonymus fortunei	Chinese Silvergrass	Miscanthus sinensis	Burning Bush	Euonymus alatus
Bush Killer (Watch List)	Cayratia japonica	Phragmites	Phragmites australis	Johnson Grass	Sorghum halepense
		Bamboos	Phyllostachys spp	Bush Honeysuckles	Lonicera, spp.
Trees		Sericea Lespedeza	Sericea Lespedeza	Periwinkles	Vinca minor
Tree of Heaven	Ailanthus altissima	Garlic Mustard (Watch List)	Alliaria petiolata	Morning Glories	Morning Glories
Mimosa	Albizia julibrissin	Cogon Grass (Watch List)	Imperata cylindrica	Bicolor Lespedeza (Watch List)	Lespedeza bicolor
Princess Tree	Paulownia tomentosa	Giant Reed (Watch List)	Arundo donax	Chinese Yams (Watch List)	Dioscorea oppositifolia
China Berry	Melia azedarach	Tropical Soda Apple (Watch List)	Solanum viarum	Air Potato (Watch List)	Dioscorea bulbifera
Callery Pear	Pyrus calleryana	Japanese Spirea (Watch List)	Spiraea japonica	Japanese Climbing Fern (Watch List)	Lygodium japonicum
White Mulberry	Morus alba	Japanese Barberry (Watch List)	Berberis thunbergii		
Tallow Tree (Watch List)	Triadica sebifera				

Hauser Creek Stream Fixed Station Photographs Taken October 24, 2012

Hauser Creek Vegetation Monitoring Photographs Taken October 24, 2012

Axiom Environmental, Inc.

Monitoring Year 1 of 5 (2012) February 2013 Appendices

APPENDIX C

VEGETATION PLOT DATA

- Table 7. Vegetation Plot Criteria Attainment
- Table 8. CVS Vegetation Plot Metadata
- Table 9. Total and Planted Stems by Plot and Species

Vegetation Plot ID	Vegetation Survival Threshold Met?	Tract Mean
1	Yes	
2	No*	
3	Yes	
4	Yes	71%
5	Yes	
6	No*	
7	Yes	

Table 7. Vegetation Plot Criteria AttainmentHauser Restoration Site (EEP Project Number 92741)

*Based on planted stems alone, this plot doesn't meet success criteria; however, when including naturally recruited stems of box elder (*Acer negundo*) and sweetgum (*Liquidambar styraciflua*) these plots were above 320 stems per acre.

Report Prepared By	Corri Faquin
Date Prepared	10/29/2012 10:36
database name	Axiom-EEP-2012-A.mdb
database location	C:\Documents and Settings\kjernigan\Desktop
computer name	KEENAN
file size	57331712
DESCRIPTION OF WORKSHEETS IN	THIS DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
Proj, total stems	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
ALL Stems by Plot and spp	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.
PROJECT SUMMARY	
Project Code	92471
project Name	Hauser Creek
Description	Stream Restoration
River Basin	Yadkin-Pee Dee
length(ft)	
area (sq m)	
Required Plots (calculated)	
Sampled Plots	7

Table 8. CVS Vegetation Plot MetadataHauser Restoration Site (EEP Project Number 92741)

Table 9. Total and Planted Stems by Plot and SpeciesEEP Project Code 92471. Project Name: Hauser Creek

											Cur	rent Plo	ot Data	(MY1 2	2012)									Anr	nual Me	ans
			924	71-01-	0001	924	71-01-	0002	924	71-01-0	003	924	71-01-	0004	924	71-01-	0005	924	71-01-	0006	924	71-01-0	0007	Μ	Y1 (201	.2)
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer negundo	boxelder	Tree			2						5			5						2			1			15
Acer rubrum	red maple	Tree												2												2
Alnus serrulata	hazel alder	Shrub	1	1	1	1	1	. 1										2	2	2	1	1	1	5	5	5
Betula nigra	river birch	Tree							2	2	2	1	1	1	. 2	2	2	2 1	1	. 1				6	6	6
Callicarpa americana	American beautyberry	Shrub							2	2	2				1	1	1	-						3	3	3
Cornus amomum	silky dogwood	Shrub	3	3	3	2	2	2	1	1	1				1	1	1	. 2	2	2				9	9	9
Diospyros virginiana	common persimmon	Tree	1	1	1										1	1	1	-			1	1	1	3	3	3
Fraxinus pennsylvanica	green ash	Tree	3	3	3	3	3	3	3	3	3	4	4	4	- 1	1	1	-						14	14	14
Liquidambar styraciflua	sweetgum	Tree			51			4			6			15												76
Liriodendron tulipifera	tuliptree	Tree	1	1	1						4			3			1	. 1	1	1	1	1	1	3	3	11
Nyssa sylvatica	blackgum	Tree							1	1	1													1	1	1
Physocarpus opulifolius	common ninebark	Shrub							2	2	2										1	1	1	3	3	3
Platanus occidentalis	American sycamore	Tree	2	2	2	1	1	. 1	2	2	2	8	8	11	. 2	2	2	2			4	4	4	19	19	22
Quercus michauxii	swamp chestnut oak	Tree	1	1	1				1	1	1							1	1	. 1	2	2	2	5	5	5
Sambucus canadensis	Common Elderberry	Shrub	1	1	1																1	1	1	2	2	2
		Stem count	13	13	66	7	7	11	14	14	29	13	13	41	. 8	8	9) 7	7	g	11	11	12	73	73	177
		size (ares)		1			1			1			1			1			1			1			7	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.17	
		Species count	8	8	10	4	4	5	8	8	11	3	3	7	6	6	7	5	5	6	7	7	8	12	12	15
	9	Stems per ACRE	526.1	526.1	2671	283.3	283.3	445.2	566.6	566.6	1174	526.1	526.1	1659	323.7	323.7	364.2	283.3	283.3	364.2	445.2	445.2	485.6	422	422	1023

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10%

APPENDIX D

STREAM SURVEY DATA

Cross-section Plots

Longitudinal Profile Plots

Substrate Plots

Table 10. Baseline Stream Data Summary

Tables 11a-b. Monitoring Data

										「上行の調える」には「																						Bankfull	Elond Drone Area		MY-01 9/12/12			40 50	
						「「「「「「「」」」」	「「「「「「「「「」」」」」											n Type E			r XS - 1, Riffle	~															-	30	Station (feet)
			*			08.8	20:0	01.8	73.67	102.4	150.0	3.6	2.1	13.8	5.1	1.0		Stream			UT to Hause											(<i>,</i>			-	0 20	S
JT to Hauser adkin Pee Dee	S - 1, Kittle	tiffle	0/25/2012	erkinson, Dean, Jernigan	SUMMARY DATA	Rankfull Flevation.		Banktull Cross-Sectional Area:	Danklull Width:	Flood Prone Area Elevation:	Flood Prone Width:	Max Depth at Bankfull:	Mean Depth at Bankfull:	W / D Ratio:	Entrenchment Ratio:	Bank Height Ratio:							103		102	101	-	(100	ee tegf)	uoj	86 1100	- 5 1.015		96		95	94	0	
	X	R	1(Ŗ	Elevation	00 AD	01:00	99.24	90.90	98.80	97.95	97.60	97.47	97.37	96.83	96.26	96.15	96.03	95.58	95.36	95.17	95.28	95.35	95.48	95.54	95.67	95.9	96.2	97.0	97.4	97.8	97.8	98.0	98.9	0.99	98.9			
ite Vatershed: Ze m		reature	Date:	field Crew:	Station	0.0	0.0	3.8 5 0	0.C	7.5	9.0	10.3	11.5	12.5	13.7	14.7	15.5	16.5	17.7	19.1	20.2	21.9	23.6	24.4	25.3	26.1	27.2	28.1	29.5	30.4	31.5	32.9	34.7	37.0	39.3	43.0			

	A A		the second				なながらたちないで、																								Bankfull	Flood Prone Area		MY -01 9/12/12			00	
						99.3	49.5	27.6	103.0	150.0	3.7	1.8	15.4	5.4	1.0		Stream Type E			UT to Hauser XS - 2, Ruttle																	20 20 40 40 20 20 20 20 20 20 20 20 20 20 20 20 20	> >
UT to Hauser Vortein Dee Dee	XS - 2, Riffle	Riffle	9/12/2012	Perkinson, Dean, Jernigan	SHMMABY DATA	Bankfull Elevation:	Bankfull Cross-Sectional Area:	Bankfull Width:	Flood Prone Area Elevation:	Flood Prone Width:	Max Depth at Bankfull:	Mean Depth at Bankfull:	W / D Ratio:	Entrenchment Ratio:	Bank Height Ratio:							104	-	103		107	it) 101	<u>Ş</u> əəəf)	- 00 1 UO	99	Elev	- 00	67		- 06	95	0	
					Flavotion	100.61	100.50	99.59	99.07	98.62	98.60	97.97	97.63	97.19	97.02	96.86	96.50	90.21	95.97	95.99	95.60	95.67	95.95	96.15	96.45	96.68	97.09	97.38	97.98	98.33	98.84	99.31	99.40	99.54				
Site Watershed.	XS ID	Feature	Date:	Field Crew:	Station	0.00	3.53	6.44	8.99	11.01	12.09	14.39	16.13	17.55	18.31	18.86	19.89	20.78	22.28	23.11	24.4	24.6	25.2	26.1	26.7	27.4	28.6	29.3	31.0	32.28	33.66	35.42	37.4	39.9				

											Stream Type E) Hauser XS - 3. Riffle									Bankfüll	DAUNUI	Flood Prone Area	CU/CI/6 HO- AM	-	20 30 40 50	Station (feet)	
	101 3	76.3	32.4	104.9	150.0	3.6 2.4	13.8	4.6	1.0				IT to											/		-	2(
o Hauser kin Pee Dee 3, Riffle e /2012 inson, Dean, Jernigan	SUMMARY DATA Bouldfull Flowetion:	Bankfull Cross-Sectional Area:	Bankfull Width:	Flood Prone Area Elevation:	Flood Prone Width:	Max Depth at Bankfull: Mean Denth at Bankfull:	W / D Ratio:	Entrenchment Ratio:	Bank Height Ratio:						104	- 001	105	10	103 +	102		101	1 100		66	 97	0 10		
UT to Yadk XS - XS - 8 fff 9/12/ Perki	S			H	E			E	B										 (172	əf) 1	uoņ	DAƏ	El			 			
	Elevation	102.01	101.91	100.59	99.78	99.41 99.07	97.88	97.95	97.73	97.67	97.84 07.07	16.16	98.34 00.13	09.60	100.18	101.32	101.49	101.61											
Site Watershed: XS ID Feature Date: Field Crew:	Station	3.76	5.98	8.95	10.80	12.46 13.59	16.51	17.99	19.57	23.77	25.66 27.05	06.12	30.27	33.1	35.7	39.7	41.9	44.6											

Waterchad.		Vadkin Daa Daa		1-1/3. Bar	- What		
XS ID		XS - 4, Pool					
Feature		Pool					
Date:		9/12/2012					
Field Crew:		Perkinson, Dean, Jernigan					
Station	Elevation	SUMMARY DATA					
0.0	101.5	Bankfull Elevation:	101.3				
3.3	101.6	Bankfull Cross-Sectional Area:	88.3				
5.9	101.5	Bankfull Width:	28.9				
7.2	101.3	Flood Prone Area Elevation:	NA				
10.1	100.1	Flood Prone Width:	NA		「日本語」になってな		
12.7	99.1	Max Depth at Bankfull:	5.9	and the second sec			
14.8	2.06	Mean Depun at Banktunt: W/ / D. D45	1.0				
10.2	0.10	W / D Kallo: Entronchment Defie:	NA			1416	
10.5	0.16	Educenciment Nauo: Ronk Height Refig:	10				
211	95.8	Daux Itelgut Nauo.	1.0		and the state of the state		
22.6	95.4		S	tream Type C/E			
23.9	95.9			- 10			
26.0	97.0						
27.6	97.9						
29.1	98.3		UT to Ha	user XS - 4, Pool			
31.3	99.1						
33.7	100.0	102					
36.7	101.6			L			
43.0	101.7	101					
		100 (1991)					
		иоцрл 8					
		ele			Bankfu		
						Prone Area	
			_	-	MY-01	9/12/12	
		0 10	20	30	40	50	
				Station (jeet)			

	b c c c c c c c c c c c c c c c c c c c
UT to Hauser Yadkin Pee Dee XS - 5, Riffle Riffle 9/12/2012 Perkinson, Dean, Jernigan	SUMMARY DATA Bankfull Elevation: Bankfull Cross-Sectional Area: 85.8 Bankfull Width: 33.6 Flood Prone Area Elevation: 106.2 Flood Prone Width: 33.6 Max Depth at Bankfull: 2.6 W/D Ratio: 13.2 Entrenchment Ratio: 4.5 Bank Height Ratio: 1.0 CT to
Site Watershed: XS ID Feature Date: Field Crew:	Station Elevation 0.00 101.92 5.39 101.94 7.77 100.78 9.95 99.85 12.76 99.55 14.58 98.67 15.17 98.67 16.17 98.15 17.84 97.68 20.16 97.68 23.20 97.68 23.20 97.68 23.20 97.68 23.20 97.68 23.43 99.76 30.43 99.76 30.43 99.76 32.6 99.95 30.7 102.13 45.0 102.13

														North Contract of the State of		Е													Bankfull		Flood Prone Area	MY-01 9/12/12	-	40 50 60		
						103.1	109.9	39.7	NA	NA	5.6	2:0 NIA	NA	1.0		Stream Type			UT to Hauser XS - 6, Pool										\$				-	20 30 Station (East)	(12al) unimic	
UT to Hauser Yadkin Pee Dee	XS - 6, Pool	Pool	9/12/2012	Perkinson, Dean, Jernigan	SUMMARY DATA	Bankfull Elevation:	Bankfull Cross-Sectional Area:	Bankfull Width:	Flood Prone Area Elevation:	Flood Prone Width:	Max Depth at Bankfull:	Wealt Deptil at Dalikiult: W / D Defio:	Entrenchment Ratio:	Bank Height Ratio:							104		103		102	(195	+ 101 ef) 1	ioitu	00 00 00			- 86	 67	0 10		
					Elevation	103.13	103.05	102.59	101.95	101.54	101.29	100.77	100.03	99.70	99.67	99.38	99.11	98.39	97.93	97.51	97.40	97.93	97.99	98.35	98.67	99.21	99.48	27.06 100 35	101.02	103.12	103.25	103.32				
Site Watershed:	UI SX	Feature	Date:	Field Crew:	Station	0.00	2.15	4.68	7.58	10.26	12.40	14.//	18.70	21.25	22.54	23.60	24.40	24.74	25.91	27.45	28.87	30.57	31.33	32.29	32.90	33.96	34.82	37.07	38.86	41.96	44.99	48.43				

	1027 383. 383. 1001 1500 1500 1500 101 Image: Since the second secon
UT to Hauser Yadkin Pee Dee XS - 7, Riffle Riffle 9/12/2012 Perkinson, Dean, Jernigan	SUMMARY DATA Bankfull Elevation: Bankfull Cross-Sectional Area: Bankfull Vidth: Flood Prone Area Elevation: Flood Prone Width: Max Depth at Bankfull: Mean Depth at Bankfull: W/D Ratio: Entrenchment Ratio: Bank Height Ratio: 0 10 99 99 99 99 99 99 99 99 99 99 99 90 90
Site Watershed: XS ID Feature Date: Field Crew:	StationElevation0.00103.390.00103.445.79103.177.90103.445.79103.477.90102.509.37101.5911.73100.8511.73100.8511.73100.8511.73100.8511.73100.8511.73100.4013.9799.9814.9199.6215.0599.2917.6298.8419.0698.5320.7698.5321.0298.5623.2698.5323.2698.5323.05100.1333.06100.7534.4102.3640.28100.7238.74102.3641.83102.7643.81102.89

			На	Table user S	e 10. E Stream	Baselin Resto	e Stre ration	am Da Site-P	ita Sui roiect	mmary No. 92	/ 2471									
Parameter	Gauge ²	Reg	ional C	urve		Pre-	Existin	g Cond	ition			Refere	nce Re	each(es	s) Data			Design		
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Med	Max	SD⁵	n	Min	Med	Max	
Bankfull Width (ft)	-	-	-	-	17.2		20.8	27.7			21.5		26.5	30.9				33		
Floodprone Width (ft)					176.8		275.2	333.4			306		415	530			210	268	330	
Bankfull Mean Depth (ft)) –	-	-	-	2		2.6	3.1			1.6		2.2	3.4				2.5		
¹ Bankfull Max Depth (ft) -				3.9		4.3	4.8			3.3		3.8	4.2			3.3	3.8	4.2	
Bankfull Cross Sectional Area (ft ²)	-	-	-	-	38		54.7	71.2			43		60	80				83.2		
Width/Depth Ratio	-				5.5		8	10.8			7		12	19				13		
Entrenchment Ratio	-				10		13.5	19.3			8.3		16	22.4			6.4	8.1	10	
¹ Bank Height Ratio	- 0				0.8		1.26	1.65			0.7		0.86	1.07			0.9	1	1.1	
Profile																				
Riffle Length (ft)																				
Riffle Slope (ft/ft)																				
Pool Length (ft)																				
Pool Max depth (ft)					4.6		5.4	7.2			3.8		4.5	5.2			3.5	4	4.7	
Pool Spacing (ft)					12.3		83.2	308			30		64	106			65	89	110	
Pattern																				
Channel Beltwidth (ft)					35		46.6	56			26		30	36			43	61.5	107	
Radius of Curvature (ft)					23		92.1	273			13		85	275			50	80	155	
Rc:Bankfull width (ft/ft)					1.2		4.5	14.4			0.53		3.58	11.2			1.5	2.4	4.7	
Meander Wavelength (ft)					55		118	245			60		90	160			128	164	194	
Meander Width Ratio					2.9		5.8	12.9			1.1		1.3	1.6			1.3	1.9	3.3	
					_						_									
Transport parameters					T												-			
Reach Shear Stress (competency) lb/f ²																				
Max part size (mm) mobilized at bankfull																				
Stream Power (transport capacity) W/m ²																				
Additional Reach Parameters																				
Rosgen Classification			C5/E5 C5/E5												C5					
Bankfull Velocity (fps)							5.	24						5						
Bankfull Discharge (cfs)							4	16												
Valley length (ft)							21	56												
Channel Thalweg length (ft)							22	42										2463		
Sinuosity (ft)							1.	04					1.	.1				1.17		
Water Surface Slope (Channel) (ft/ft)	-						0.0	024					0.0	028			0.0025			
BF slope (ft/ft)	-																			
³ Bankfull Floodplain Area (acres)																				
⁴ % of Reach with Eroding Banks	;																			
Channel Stability or Habitat Metric	;																			
Biological or Other																				

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

-	Fable	11a. N	Ionito	ring Da	ata - D	imensi	ional I	Norph	ology	Summ	ary (D	imens	ional F	Paramo	eters -	Cross	s Secti	ions)								
		Cro	ss Secti	ion 1 (Ri	iffle)			Cro	ss Secti	ion 2 (Ri	ffle)		Cross Section 3 (Riffle)							Cross Section 4 (Pool)						
Based on fixed baseline bankfull elevation ¹	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+		
Record elevation (datum) used	98.8						99.3			1			101.3		1				101.3							
Bankfull Width (ft)	29.2						27.6						32.4						28.9							
Floodprone Width (ft)	150.0						150.0						150.0						NA							
Bankfull Mean Depth (ft)	2.1						1.8						2.4						3.1							
Bankfull Max Depth (ft)	3.6						3.7						3.6						5.9							
Bankfull Cross Sectional Area (ft ²)	61.8						49.5						76.3						88.3							
Bankfull Width/Depth Ratio	13.8						15.4						13.8						NA							
Bankfull Entrenchment Ratio	5.1						5.4						4.6						NA							
Bankfull Bank Height Ratio	1.0						1.0						1.0						1.0							
Cross Sectional Area between end pins (ft ²)																										
d50 (mm)	NA						NA						23.1						NA							
		Cro	ss Secti	ion 5 (Ri	ffle)			Cro	ss Sect	ion 6 (P	ool)			Cro	ss Secti	on 7 (Ri	ffle)									
Based on fixed baseline bankfull elevation ¹	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+								
Record elevation (datum) used	101.9						103.1						102.7													
Bankfull Width (ft)	33.6						39.7						33.0													
Floodprone Width (ft)	150.0						NA						150.0													
Bankfull Mean Depth (ft)	2.6						2.8						2.6													
Bankfull Max Depth (ft)	4.3						5.6						4.4													
Bankfull Cross Sectional Area (ft ²)	85.8						109.9						85.5													
Bankfull Width/Depth Ratio	13.2						NA						12.7													
Bankfull Entrenchment Ratio	4.5						NA						4.5													
Bankfull Bank Height Ratio	1.0						1.0						1.0													
Cross Sectional Area between end pins (ft ²)																										
d50 (mm)	0.1						NA						22.0													

1 = Widths and depths for monitoring resurvey will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be reaclulated in a future submission based on a consistent datum if determined to be necessary."

	Exhibit Table 11b. Monitoring Data - Stream Reach Data Summary Hauser Stream Restoration-Project No. 92471 (2463 feet)													_																	
Parameter			M	Y-1			MY-2						MY- 3						MY- 4							MY- 5					
Dimension and Substrate - Riffle only	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	
Bankfull Width (ft)	27.6		32.4	33.6																											
Floodprone Width (ft)			150																												
Bankfull Mean Depth (ft)	1.8		2.4	2.6																											
¹ Bankfull Max Depth (ft)	3.6		3.7	4.4																											
Bankfull Cross Sectional Area (ft ²)	49.5		76.3	85.8																											
Width/Depth Ratio	12.7		13.5	15.3																											
Entrenchment Ratio	4.5		4.6	5.4																											
¹ Bank Height Ratio			1																												
Profile																															
Riffle Length (ft)	28	48	48	74	12.5	27																									
Riffle Slope (ft/ft)	0.0%	0.5%	0.3%	2.8%	0.6%	25																									
Pool Length (ft)	3	16	12	49	11	31																									
Pool Max depth (ft)	5.6		5.8	5.9																											
Pool Spacing (ft)	8	77	85	118	27	31																									
Pattern																															
Channel Beltwidth (ft)																															
Radius of Curvature (ft)											torn dat	a will no	at typica	lly be co	llected		vieual de	ata dimi	enciona	l data oi	r nrofile	data									
Rc:Bankfull width (ft/ft)											lenn uai		or typica	indicate	e signific	cant shif	fts from	baseline	ensiona 9		pionie	uata									
Meander Wavelength (ft)													_					-													
Meander Width Ratio																															
Additional Reach Parameters	-																														
Rosgen Classification			(C4																											
Channel Thalweg length (ft)			24	468																											
Sinuosity (ft)			1.	.17																											
Water Surface Slope (Channel) (ft/ft)			0.0	022																											
BF slope (ft/ft)		1	-		1				1	1	1			1	1	-	1			1	1	-	1			1	-	-			
[°] Ri% / Ru% / P% / G% / S%	52%	16%	20%	12%						<u> </u>			_			ļ	<u> </u>			ļ		ļ					<u> </u>	ļ			
[°] SC% / Sa% / G% / C% / B% / Be%	19	28	32	21	0	0	<u> </u>				<u> </u>			<u> </u>	<u> </u>	<u> </u>			<u> </u>			<u> </u>			<u> </u>			<u> </u>		L	
čd16 / d35 / d50 / d84 / d95 /	NA	0.26	6.9	73	130								_														I				
² % of Reach with Eroding Banks			<	5%			I											I													
Channel Stability or Habitat Metric			-				I												—						I						
Biological or Other			-																												

Shaded cells indicate that these will typically not be filled in. 1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table 3 = Riffle, Run, Pool, Glide, Steps, Sill Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave 4. = Of value/needed only if the n exceeds 3

APPENDIX E HYDROLOGY DATA Table 12. Verification of Bankfull Events

Table 12. Verification of Bankfull Events

Date of Data Collection	Date of Occurrence	Method	Photo (if available)
10-30-2012	None Observed	-	

Hauser Creek Restoration Site (EEP Project Number 92741)